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ABSTRACT 
 
 
Nonlinearity in oscillations and waves can lead to dramatic and useful 

behavior.  The course PH4459 at the Naval Postgraduate School was recently 

redesigned to extend its original subject of nonlinear acoustics to nonlinear 

oscillations and waves in general, with minimal prerequisites so that non-

acoustics-tracked students can enroll in the course.  Due to the unusual behavior 

and mathematical difficulty of nonlinear systems, lecture demonstrations are vital 

to the teaching of the course.  The purpose of this thesis is to develop two new 

demonstrations for the course, and to improve an existing demonstration.  In one 

of the new demonstrations, we investigate the generation and detection of high-

amplitude waves on water to demonstrate the dependence of the wave speed 

upon amplitude.  The experimental data agree with the theory.  In the other new 

demonstration, we investigate a compression driver that exhibits a strong 

response at half the frequency of the drive.  Data and the current scientific 

literature indicate that this behavior is due to parametric excitation of the 

deformation modes of the diaphragm assembly.  Finally, we describe 

improvements to a torsional oscillator that is parametrically excited by modulation 

of its length.  The improvements include a new motor, sturdier construction, and 

a new torsional strip. 
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I. INTRODUCTION 

Nonlinearity often plays an essential role in physical systems.  Until the 

roughly the 1970s, physicists tended to be blind to this fact, and to focus only on 

linear systems, or on systems linearized about some state.  Part of the reason for 

the neglect of nonlinearity was the attention paid to the development of relativity 

and quantum mechanics.  However, the discovery of chaos abruptly changed 

physicists’ attitudes, leading to investigations in a broad range of nonlinear 

phenomena in many fields.  In the roughly 30 years that has elapsed, only a 

small part of the resultant wealth of knowledge is readily available to students 

other than those who specialization involves some area of nonlinear phenomena.  

With this in mind, Professors. Andrés Larraza and Bruce Denardo, in the Physics 

Department at the Naval Postgraduate School, recently redesigned the course 

PH4459, which was originally a course primarily in acoustic shock waves for 

acoustics-tracked students.  The material was extended to cover nonlinear 

oscillations, nonlinear dispersive waves (such as ocean waves), and many other 

nonlinear acoustical phenomena in addition to shocks.  In addition, the course is 

open to all students with minimal prerequisites.   

Nonlinear behavior is often surprising, and is also conceptually 

challenging.  In addition, analytical treatments are almost always difficult.  

Lecture demonstrations thus play a very important role in the teaching of 

PH4459.  As a result of the attention over decades that the NPS Physics 

Department has given lecture demonstrations in all areas of physics, some 

nonlinear oscillation and wave demonstrations already exist, but many more are 

needed.  These include some that are only concepts; that is, demonstrations that 

have not yet been developed at NPS or any other institution.  The goal of this 

thesis is to develop several nonlinear oscillation and wave demonstrations for 

use in PH4459 and other courses.   

We began with nonlinear capillary waves, which are short-wavelength 

surface waves on a liquid.  Our hope was to develop two new demonstrations.  
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The first was to demonstrate that the wave speed increases with amplitude, for a 

fixed frequency.  The second was to demonstrate that a wave can be created 

due to the nonlinear interaction of two waves at an angle.  As discussed in Ch. II, 

however, difficulties with capillary waves forced us to reconsider our goals.  The 

result, as discussed in Ch. III, is a demonstration that clearly shows the effect for 

gravity waves (longer-wavelength waves).  Comparison of our data with the 

theory yielded good agreement. 

Another project began as the construction of an acoustical parametric 

end-fired array in air.  Due to substantial difficulties, this project was postponed 

for a future thesis student.  However, while testing a compression driver, we 

found a very clear subharmonic at half the drive frequency of 20 kHz.  We 

decided to pursue this interesting nonlinear effect.  As detailed in Ch. IV, through 

collection and analysis of data, and comparison to the scientific literature, we 

show that this subharmonic is almost certainly due to parametric excitation of 

deformation modes of the diaphragm at high frequency, and parametric 

excitation of the fundamental mode of the compression driver at low frequency. 

A previous student (Janssen, 2005) had built a length-modulated torsional 

oscillator as a demonstration of parametric excitation.  However, many 

improvements need to be made before the system becomes suitable as a lecture 

demonstration apparatus.  In Ch. V, we report on several major improvements 

that we have made.  The most important improvements were a new motor, which 

was only decided upon after a detailed analysis, and a new torsional strip, which 

was only decided upon after extensive experimentation. 
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II. NONLINEAR TRAVELING CAPILLARY WAVES 

In this chapter, we discuss nonlinear capillary waves and the construction 

of a variable capacitance wave height transducer to measure the height of 

capillary waves.  The theory for this work is stated in Sec. A, the circuitry used in 

the sensor is addressed in Sec. B, the construction of the sensor is detailed in 

Sec. C, the calibration and experiments are discussed in Sec. D, the construction 

of the apparatus in Sec. E, and future work in Sec. F. 

 

A. THEORY 
 Capillary waves are similar to gravity waves which will be addressed in 

chapter II, except surface tension supplies the restoring force rather than gravity. 

For deep capillary waves, which is usually the case considered because the 

shallow waves are strongly damped, the linear dispersion relationship is 

 2 3kω σ=  ,          

 where σ = α/ρ, where α is the surface tension coefficient and ρ is the density of 

the liquid.  The dispersion relationship for general surface waves on a liquid of 

depth h , where both gravity and capillarity act as restoring forces, is  

 ( )2 3 tanh( )gk k khω σ= + .        

For water, gravity and capillarity contribute equally ( 3gk kσ= ) when the 

wavelength is greater than 2 cm and the frequency is less than 13 Hz. (Landau 

and Lifshitz, 1959). 

Our goal was to develop two capillary wave demonstrations.  In the first 

demonstration, the velocity of plane capillary waves of definite frequency would 

be shown to increase with wave height amplitude.  In the second demonstration, 

two plane capillary waves of the same frequency and amplitude would be 

launched in directions with included angle θ, and allowed to interact (Figure 1).  

To leading nonlinear order, capillary waves possess a cubic nonlinearity, which 
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implies that the interaction of two waves yields sum (k1 + k2) and difference (k1 – 

k2) waves.  For capillary waves, a propagating sum wave occurs for θ = 90o, 

which is referred to as the resonance angle.  The objective of the second 

demonstration was to observe a propagating sum wave as the angle θ was 

slowly varied through the resonance value.   

 

 

 

Figure 1.   Nonlinear interaction of two waves.  Sum (shown) and 
difference (not shown) waves are produced if the leading order nonlinearity 
is cubic. 

 

 

B. WAVE SENSOR CIRCUITRY 
The motivation of building this sensor was to find a convenient way to 

measure the height of the capillary waves using a two-wire probe as a variable 

capacitor.  The water moving up the probe would cause a rise in capacitance and 

an increase in the output voltage.  Eventually, there will be two sensors that will 

be placed in a one-dimensional wave channel to measure the wave velocity, and 

two or more sensors in a two-dimensional tank to measure the sum wave as two 

capillary waves nonlinearly interact. 
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The wave height sensor consists of different components.  There are three 

chips that are used in the sensor and each of these chips has a specific purpose.  

The process of building the wave height sensor and inserting the chips will be 

discussed in Sec. C. 

The first chip that is used in the wave height sensor is the CD4047BC chip 

which is shown in Figure 2.  This is a low power monostable multivibrator, which 

is used in the wave height sensor as a square wave oscillator which provides the 

excitation for the sensor bridge. 

The second chip is the INA110.  This chip, which is shown in Figure 3, is 

called a Fast-Settling FET-Input Instrumentation Amplifier, and has the function 

of amplifying the difference signal at the output of the sensor bridge.  The bridge 

is comprised of the wave probe capacitance and a fixed capacitor in one leg, and 

a pair of resistors with potentiometer ratio adjustment in the other leg.  As the 

sensor capacitance increases from a nominal value so does the AC voltage 

difference of the bridge. 

The third and final chip used in the transducer is the AD630 Balanced 

Modulator/ Demodulator chip.  This chip, which is shown in Figure 4, acts as a 

single-channel lock-in amplifier to recover the signal from the background noise 

within the circuit. With this scheme, the frequency of the excitation signal being 

generated by the multivibrator chip is at least 100 times greater than the highest 

capillary wave frequency.  At this excitation frequency it is easy to low-pass filter 

the output of the demodulator and effectively remove the excitation frequency 

component without attenuating the capillary wave frequencies. 
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Figure 2.   Square wave oscillator circuit.  
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Figure 3.   FET instrumentation amplifier. 
 
 
 

 
 

Figure 4.   AD630 pin configuration. 
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C. SENSOR 
There were several steps in building the wave height transducer.  The first 

step consisted of building a power supply shown in Figure 5 and Figure 6.  The 

power supply provides a 12 volt power source running down the two most outer 

rows of the circuit board.  The next two outer rows are the ground supply.  It was 

important to build the power supply first so that if problems did arise with the 

transducer the power supply would not be an issue. The power supply uses a 

CD4047BC chip discussed in section B and a low pass filter to strip off the DC. 

 
Figure 5.   Power supply circuit designed by Dr. Thomas Hofler. 
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Figure 6.   Power supply. 
 
 
The next step in building the transducer consisted of building the AC 

capacitance bridge with a phase sensitive detector.  The INA110 chip along with 

a series of capacitors and resistors was used to create this bridge.  The most 

important parts of the design were the variable capacitor (the wave height 

sensor) and the variable resistor in which a heliopot was used.  The wave height 

sensor consisted of two parallel wires which acted as a capacitor.  The probe 

when submerged in water would cause an increase in capacitance which would 

cause an increase in the output voltage.  This occurs because water has a higher 

dielectric constant than air.  The heliopot or potentiometer was designed to zero 

out the output voltage at the initial submergence point.  The probe was lowered 

into the water at a certain depth which would be the starting point for the 

measurements.  At this starting point, an output voltage of zero was needed, and 

the heliopot provided the capability of doing this. 
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The third and final step in building the wave height transducer consisted of 

installing the AD630 Lock-in chip.  An oscilloscope or multimeter is attached to 

output of this chip to measure the output voltage of the entire circuit.  A simplified 

schematic of the entire circuit can be seen in Figure 7, and a picture of the actual 

circuit can be seen in figure 8. 

 

 

Figure 7.   AC capacitance bridge with phase sensitive detector designed 
by Dr. Thomas Hofler (simplified schematic). 
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Figure 8.   Wave height transducer with AC capacitance bridge. 
 

 

D. CALIBRATION AND EXPERIMENTATION 

There were three tests that we performed with this transducer.  The first 

was to measure the frequency dependence of the capacitance with the 

transducer.  The second was to do a static test to calibrate and get an idea of 

what values to expect from the transducer at certain depths or certain wave 

heights.  The third step was to actually test the transducer using a shaker table to 

mimic wave heights that might be produced by the capillary wave demonstration.   

Step one was accomplished by submerging the two-wire probe in a 

beaker of water and doing a frequency sweep from 500 Hz to 15 kHz on the 

impedance analyzer, so that we could have an accurate idea of what capacitance 

values to expect.  Since water is a dielectric, as the depth in which the probe is 

submerged increases so will the capacitance.  These first data runs were 
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performed to get an accurate idea of the frequency dependence of the 

capacitance.  At the very low frequency of 600 Hz the capacitance is shown to be 

lower, but from the impedance analyzer data the capacitance values are almost 

uniform from that value up to 15 kHz.  Figure 9 shows four frequencies that cover 

the spectrum at which the frequency sweep was done.  The capacitance values 

for 4.92 kHz, 9.996 kHz, and 15 kHz are very close in value.  The transducer will 

be operating at 10 kHz, so the frequency range tested provides an accurate 

estimate of the capacitance range. The expected capacitance ranges from 5 pF 

to about 100 pF.  This was determined by submerging the probe in to a beaker of 

water and making several data runs. 

The next step was to test the entire circuit under the same conditions 

using a multimeter to get the output voltages.  Most often an oscilloscope will be 

used but since it was only a static measurement the multimeter sufficed.  The 

data from the impedance analyzer expressed in figure 9 and the testing of the 

actual circuit expressed in figure 10 correlate very well.  Both plots were linear, 

and when used to estimate the depth of the probe from a voltage or capacitance 

reading gave accurate measurements for other data runs. 
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Figure 9.   Impedance analyzer transducer calibration. Each frequency 
sweep is represented is represented by a different point. 

 
 

Figure 10.   Static transducer calibration with bridge circuit. 
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The third and final calibration step was to perform a dynamic test of the 

wave height transducer.  An APS shaker table was used to mimic the wave 

motion scenario for which the transducer was being built.  The goal was to obtain 

an output voltage that would give an accurate measurement of the displacement 

of the shaker table which would have been checked by an accelerometer.  I 

placed beaker of water on the shaker table, submerged the two-wire probe to its 

midpoint, and attached the accelerometer. 

This test was unsuccessful due to the lack of sensitivity of the sensor, the 

displacement which the shaker table provided, and the meniscus sticking to the 

probe.  These are a few of the reasons why the shaker table did not succeed as 

a good calibration test.  The previous tests were all static and therefore did not 

have a problem with the meniscus because the depth changes were more 

pronounced than the displacement provided by the shaker table.  Since the 

shaker table only provided for a vertical motion, the meniscus stuck to the probe 

worse than it would measuring traveling waves; however, this is the first of many 

problems with the design of this demonstration.  The next step was to see what 

kind of values the probe gave for the capillary waves. 

 

 
E. APPARATUS 

The capillary wave apparatus shown in Figure 11 was comprised of a 

wave channel, an 8 inch driver, the wave height probe, and a wedge.  The goal 

was to build a demonstration which would allow an audience to see the 

amplitude dependence of the velocity of capillary waves.  The hope was then to 

expand the apparatus with the construction of a larger tank, a second driver, and 

a second probe, to demonstrate the nonlinear interaction of two capillary waves. 
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Figure 11.   Capillary wave apparatus. 

 

In attempting to build a working apparatus we went through several steps 

to try to produce the capillary waves.  The first driver used was only 4 inches in 

diameter, and it could not withstand the drive voltage that was needed to get high 

amplitude capillary waves.  The next step was to try a bigger driver that had a 

greater displacement and could handle the larger drive voltage.  Even with a 

better driver it still proved difficult to produce the capillary waves.  At the 

frequency range of 13 to 30 Hz, the wave forms being produced were very 

messy having almost no sinusoidal form. 

Despite the difficulties with the wave height sensor, the production of this 

apparatus was halted by the inability to produce clean high amplitude capillary 

waves.  We never actually measured any capillary waves with the wave height 

probe, but it seems from the dynamic test that unless the amplitude was much 

larger than predicted the sensitivity and the meniscus problems might make the 

sensor ineffective for this demonstration purpose.  It might be possible to fix the 

meniscus problem by painting the probe wires with a hydrophilic coating such as 

an exterior latex paint.  However, this was not tried since satisfactory capillary 

waves could not be produced. 
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We went down to a much lower frequency range to try and produce the 

waves, and in doing so we actually stumbled across the nonlinear effect of 

gravity waves which will be discussed in chapter II.  

 

F. FUTURE WORK 
This was an unsuccessful experiment.  Due to the inability to produce the 

capillary waves the experiment was impossible to perform.  The next step is to 

find some way in which these waves can be produced.  Once that step is 

complete then finding a way to measure the waves is necessary.  The sensor 

that was originally built worked well for later experiments with gravity waves, but 

it may not be a possibility for future work with capillary waves.  Either a new 

probe that is more sensitive or using some sort of laser to measure the wave 

height would be ideal in performing this experiment. 
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III. NONLINEAR TRAVELING GRAVITY WAVES 

In this chapter, we show that the speed of a finite amplitude surface wave 

on water depends upon the amplitude.  This is a nonlinear effect.  The theory for 

this work is stated in Sec. A, the methods of measurement in Sec. B and Sec. C, 

the experimental results in Sec. D, and future work in Sec. E. 

 

A. THEORY OF NONLINEAR TRAVELING GRAVITY WAVES 
 

We consider one-dimensional weakly nonlinear traveling waves on the 

surface of a deep liquid (Figure 12).  The wavelength is assumed to be 

sufficiently large such that surface tension is negligible compared to gravity.  For 

water, wavelengths greater than several centimeters satisfy this condition 

(Landau and Lifshitz, 1959).   

 
 
 
 

Figure 12.    Geometry of a one-dimensional traveling gravity wave on a 
deep liquid.  The peak amplitude is A, the wavelength is λ , and the wave 
moves with velocity v. 

 

Linear theory (Landau and Lifshitz, 1959) yields the linear dispersion 

relationship 

 2 gkω =  ,       (3.A.1) 
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where ω = 2πf is the angular frequency of the wave (f is the frequency), and k = 

2π/λ is the wave number (λ is the wavelength).  The linear wave (or phase) 

velocity is then 

 0
g gv

k k
ω

= = =
ω

 ,     (3.A.2) 

where we use the subscript “0” to denote the linear value as opposed to the 

weakly nonlinear value (see below).   

A nonlinear calculation that is valid to leading order in kA << 1 yields the 

nonlinear dispersion relationship (Whitham, 1974) 

 ( )2 2 2gk 1 k Aω = +  ,     (3.A.3) 

which was first derived by Stokes in 1847.  Note that the quantity kA = 2πA/λ is a 

measure of the maximum steepness of a wave.  Because this quantity is 

assumed to be small, the square root of Eq. (3.A.3) is 

 2 21gk 1 k A
2

⎛ ⎞ω = +⎜ ⎟
⎝ ⎠

 ,     (3.A.4) 

to leading order in kA.  The wave velocity v = ω/k is then 

 2 2
0

1v v 1 k A
2

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 ,     (3.A.5) 

where we have substituted the expression (3.A.2) of the linear wave velocity.   

In the experiment (Sec. 3.D), we deal with waves of fixed frequency f = 

ω/2π.  Because the nonlinear term in Eq. (3.A.5) is small, we use the linear 

dispersion relationship (3.A.1) to eliminate k in terms of f.  The result is the 

theoretical wave velocity 

 
4 4

2
0 2

8 fv v 1 A
g

⎛ ⎞π
= +⎜ ⎟

⎝ ⎠
 ,     (3.A.6) 

where 
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 =
π0
gv

2 f
 ,       (3.A.7) 

from Eq. (3.A.2).  A sketch of the relationship (3.A.6) is shown in Figure 13.  The 

wave velocity increases quadratically with amplitude, which is valid to leading 

order in the amplitude.  In Sec. 3.D, we compare experimental data to the 

theoretical expression (3.A.6) for the wave velocity as a function of wave height 

amplitude A for fixed frequency f. 

 

 
 

Figure 13.    Sketch of the wave velocity v as a function of wave height 
amplitude A, for weakly nonlinear gravity waves on a deep liquid. 
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B. PHASE SHIFT METHOD 
 
The dependence of the velocity of a wave upon the amplitude of the wave 

can be measured with a single probe.  To accomplish this measurement, the 

instantaneous wave height is continuously measured with the probe at a fixed 

distance from a driver (Figure 14).  The response voltage is sent to an 

oscilloscope that is triggered by the voltage source of the driver.  As the drive 

amplitude and thus response amplitude are altered, a change in the wave 

velocity would be observed as a phase shift of the response (Figure 15).  For 

waves whose velocity increases with amplitude, as predicted for gravity waves 

(Sec. 3.A), the peaks of the waveform on the scope occur at an earlier time, as 

shown in Figure 15.   

 

 

 

Figure 14.   Arrangement to measure the dependence of the wave velocity 
on the amplitude of a wave.  The drive frequency is held fixed as the 
amplitude of the drive is changed.  The phase difference of the wave at the 
probe can be used to determine the shift in wave velocity. 

 

 

 



 21 

 

 

Figure 15.   Representation of an oscilloscope display of the output of a 
wave height probe and a function generator.  The square wave is from the 
driver voltage source (function generator), which is used as the trigger for 
the probe output.  The dashed waveform is a small-amplitude 
(approximately linear) wave, and the solid waveform is a finite-amplitude 
waveform.  The time interval ∆T is the time that a peak of the finite-
amplitude wave occurs prior to the corresponding peak of the small-
amplitude wave, which shows that the finite-amplitude wave has greater 
velocity. 

 

The phase shifting toward earlier times is indeed what we observe in 

experiments.  However, how do we know that the phase shifts are due to 

changes in the wave velocity and not, say, to a phase-dependence of the driver 

due to amplitude, or to some other effect?  One way to resolve this issue is to 

compare the observed phase shifts with theoretical predictions based on 

changes in the wave velocity.  Equivalently, we can use the experimentally 

measured phase shifts to determine the corresponding wave velocity (assuming 

that the phase shifts are caused by changes in the wave velocity).  If agreement 
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occurs, then the phase shifts are almost certainly caused by the changes in wave 

velocity.  We adopt this second comparison. 

As in Sec. 3.A, we let v0 refer to the wave velocity of a linear (infinitesimal 

amplitude) wave of frequency f, and v to the velocity of the finite-amplitude wave 

with the same frequency but with peak amplitude A.  Suppose that the linear 

wave requires the time T to travel the distance D from the wave generator to the 

probe (refer to Figure 14): 

 0
Dv
T

=  ,       (3.B.1) 

and that a finite-amplitude wave with the same frequency requires the time T– ∆T 

to travel the same distance: 

 Dv
T T

=
− ∆

 ,      (3.B.2) 

The ratio of the velocities is then 

 
0

0

v T 1 1
T Tv T T 1 1

T D v

= = =
∆ ∆− ∆ − −

 ,   (3.B.3) 

or 

 0

0

vv
1 v T D

=
− ∆

 .     (3.B.4) 

This expression allows us to determine the wave velocity from phase difference 

measurements ∆T, if the linear velocity v0 is known.  There are two alternatives 

for the determination of v0.  We can approximate this value from measurements 

of a small-amplitude wave, or we can use the theoretical linear wave velocity 

relationship (3.A.7).  We adopt the latter procedure because it is simpler and 

more accurate.  Furthermore, the linear theory will be experimentally tested by an 

independent and simpler method that is described in the next section. 
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C. WAVELENGTH METHOD 
 
An alternative method to phase shift measurements (Sec. 3.B) is to 

directly measure the wave velocity by measuring the wavelength.  The wave 

velocity, frequency, and wavelength for any wave of definite frequency are 

related by v = ω /k, or 

 v f= λ  ,       (3.C.1) 

which is simply a statement that velocity equals distance divided by time.  

Because we deal with waves of fixed frequency, the fact that the wave velocity is 

predicted to increase with amplitude thus means that the wavelength should 

increase proportionally with amplitude.  In the wavelength method, therefore, we 

directly measure the wavelength of the traveling gravity waves as a function of 

amplitude, and determine the wave velocity by simply multiplying the wavelength 

by the frequency, according to Eq. (3.C.1). 
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D. EXPERIMENTAL DATA AND COMPARISON TO THEORY 
 
With the channel apparatus in Figure 16, we collected several sets of 

data.  We used the same apparatus from the nonlinear capillary wave 

experiment.  This apparatus was driven by an 8-inch loud speaker with a drive 

arm and a wedge as the wave generator.  Another essential part of this 

experiment was the wave height sensor discussed in Chapter II and in section B 

of this chapter.  This sensor gave us the ability to get the phase shift 

measurement of the wave form as the velocity increased.  The wave tank was 

used for a prior demonstration purpose, and we were very fortunate to have such 

a precisely machined trough.  The ruler was placed on the inside of the so that a 

proper scaling could be applied to the measurements taken by photo which will 

be discussed later in this section.  Any improvement to this design and future 

work that should be carried out will be left for discussion in section E. 

 
Figure 16.   Gravity wave apparatus. 
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As stated in sections B and C, we used the wavelength method and the 

phase shift method to analyze the data in which we collected.  Before we can 

discuss that outcome of the experimental data, we must first discuss how we 

collected the data and the uncertainties in our data.  We will then show the final 

outcome of our experiment. 

Using a multimeter, an Infinium oscilloscope, a power amp, a function 

generator, and a filter, we were able to collect our data.  We were driving at a 

constant frequency of 5 Hz and would increase the amplitude of the waveform by 

a voltage increase to the wave generator.  Before actually collecting data we 

would increase the drive voltage across the wave generator to its maximum.  

This was done to wet the probe, so that the lower amplitude waves would be 

picked up by the probe.  After the wetting of the probe we would decrease the 

drive voltage to the lowest possible amount so that a sinusoidal wave was still 

visible on the oscilloscope.  From this point we would then record the drive 

voltage value, the starting point to take the phase shift measurements, and four 

photos so that the amplitude value and wavelength value could be measured.  

The drive voltage was then increased and recorded.  At each of these following 

drive voltages, the phase shift data was collected from the Infinium and 

photographs were taken to allow for the wavelength and amplitude 

measurements. 

The data taken from the Infinium oscilloscope was a direct measurement 

and did not involve much effort other than using the marker feature on the scope 

itself.  The wavelength and amplitude measurements did however take a bit more 

effort in measuring.  Seen in Figure 17 is a series of photographs in which 

amplitude and wavelength measurements were taken.  Each of these 

photographs was taken with an Olympus 8 megapixel camera.  Putting 

fluorescein in the water allowed for a better contrast and easier measuring.  The 

ruler that is attached to the side of the acrylic tank also allowed for the proper 

scaling in measuring the waveforms.  Due to the small amplitude and the 

difficulties in measuring these values, we measured the peak-to-peak amplitude 
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rather than that of the peak amplitude.  The waves also decayed so rapidly that 

we measured half the wavelength and multiplied by two so that the values would 

be more accurate.  After measuring the data from our photographs and matching 

the phase shift measurement with the proper amplitude measured from the 

photos we then plotted our data. 

 

   

     

 

Figure 17.   Waveform photographs from which amplitude and wavelength 
measurements were taken. 
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In all experimental work there are uncertainties that must be taken into 

account.  Our experiment had several uncertainties, and we must address these 

so that we can determine the error bars that need to be inserted into the graph.  

To obtain an uncertainty from the data collection itself we would have to have 

taken many data runs, and since that was not feasible we will assign 

uncertainties.  For the amplitude measurement, the uncertainty is just a direct 

assignment, but for the velocities for the wavelength and the phase shift method 

we must calculate the effects of the uncertainties on the velocity values.  In the 

wavelength measurement the uncertainty is determined as follows: 

= λv f ,        (3.D.1) 

δ = λδ + δλv f f ,       (3.D.2) 

where δf  can be assumed to be zero.  Hence, 

( )δ = δλ = δ λv f 2f 2       (3.D.3) 

is the final uncertainty equation since our measurements were of the half 

wavelength.  The uncertainty value for ( )δ λ 2  is 3 mm. 

For the phase shift method the uncertainty is determined as follows: 

0

0

vv
1 v T D

=
− ∆

,       (3.D.4) 

δ ∆ ∆⎡ ⎤δ = − δ⎢ ⎥− ∆ ⎣ ⎦
0 0 0

2 2
0

v v ( T) v Tv D
(1 v T D) D D

,   (3.D.5) 

where δD  can be ignored since its effects are negligible compared to that of 

δ ∆( T) .  The final equation used for the uncertainty is then 

δ ∆⎡ ⎤δ = ⎢ ⎥⎣ ⎦
2 ( T)v v

D
,       (3.D.6) 

where we assign a δ ∆( T)  value of 30 ms. 
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In terms of the peak-to-peak amplitude App = 2A, the relative wave velocity 

(3.A.6) is 

4 4
2

0 pp2
2 fv v 1 A

g
⎛ ⎞π

= +⎜ ⎟
⎝ ⎠

 ,      (3.D.7) 

which is the curve in Figure 18.  The value of the linear wave velocity v0 is 

determined from the relationship (3.A.7).  Also in Figure 18 we have plotted our 

experimental results.  From the graph, we can see that the data from the 

wavelength method agrees with the theory, except for the point corresponding to 

the greatest amplitude.  The data from the phase method matches to the 

theoretical curve at the lower amplitudes; however, it increases faster than the 

theoretical for the higher amplitude values.  The discrepancy is due to the 

significant decay of the amplitude of a wave.  When we applied the wavelength 

method to an entire wavelength rather than one-half wavelength, the phase and 

wavelength methods yielded approximately the same wave velocities.  The 

qualitative effect (a wave having greater velocity at greater amplitude) can be 

observed as a demonstration, but to get a precise data analysis of this process 

several improvements need to be made.  Each of these improvements will be 

addressed in section E 
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Figure 18.   Wave velocity of 5.0 Hz gravity waves as a function of wave 
height amplitude.  The curve is theoretical.  The circles are experimental 
values from the phase shift method, which uses the theoretical linear value 
v0 of the wave velocity for infinitesimal amplitude.  The triangles are 
experimental values from the wavelength method. 

Wavelength method

Phaseshift method
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E. FUTURE WORK 
The traveling gravity wave apparatus provides an opportunity to study 

nonlinear gravity waves.  This demonstration has potential, but needs work 

before it is ready for the classroom.  There are several improvements that need 

to be made.  The first improvement is the construction of two wave height probes 

that will provide the demonstrator both phase shift and amplitude data.  In our 

experiment thus far we have been working with one probe, and because of this 

have had to use the theoretical linear wave velocity for our phase shift 

measurements.  Using two probes will give us the =0v D T  value that we 

assumed to be = ω0v g  in our measurements.  The second improvement is a 

new wave generator.  The idea for this new wave maker is to construct a paddle 

seen in Figure 19 that will have the drive horizontal rather than vertical as seen in 

Figure 16.  This will allow the probes to be placed closer than before so that the 

initial waves can be measured before decay.  The final improvement would be to 

make the wave tank longer.  It is possible that some of the interference at higher 

amplitudes was due to reflections from the other end of the tank.  If some type of 

beaching or other damping method was applied at the end of the tank, it could 

possibly help get data at higher amplitudes.  These are the improvement that 

must be made to tank the next step in making this demonstration classroom 

ready. 
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Figure 19.   Drawing of prospective wave generator where the circles 
represent the pivot points on the paddle. 
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IV. PARAMETRIC INSTABILITY OF A COMPRESSION DRIVER 

One of the projects that we began for this thesis was the construction of a 

parametric end-fired array to operate in air.  Due to various difficulties, we 

decided to postpone this project for a future thesis.  However, while 

experimenting with different drivers, we observed a very clear f/2 subharmonic 

response when a compression driver was driven at a frequency of f = 20 kHz.  In 

this chapter, we describe a lecture demonstration, experimental results, and 

scientific literature regarding this phenomenon. 

 

A. BACKGROUND 
 
If a parameter of an oscillatory system is modulated by an external source, 

it is possible to excite oscillations.  This parametric excitation is most readily 

achieved when the drive frequency is twice the natural frequency of a mode of 

the system, and only occurs when the drive amplitude exceeds a threshold that is 

dictated by the dissipation of the system.  A simple example is a pendulum 

whose length is modulated by hand.  This can be accomplished with a weight 

attached to a string, where the string passes through an eyelet formed by the 

index finger and thumb of one hand.  The other hand pulls the string horizontally 

back and forth.  If the drive frequency is approximately twice the pendulum 

frequency, and the drive amplitude is sufficiently large, parametric excitation will 

occur. 

The source need not be external to the oscillator.  Due to a quadratic 

nonlinear coupling of modes, an excited mode can parametrically excite another 

mode if the frequency of the first mode is approximately twice the frequency of 

the second, and if the threshold condition is met.  (If the coupling is cubic, it is 

readily shown that the frequencies of the modes should be equal.)  This internal 

parametric excitation is sometimes referred to as autoparametric excitation.  If 

the first mode is not driven externally, its amplitude must decrease by energy 



 34 

conservation, and so this behavior is referred to as a parametric instability.  

When the first mode is externally driven, the amplitudes of both modes typically 

remains constant.  This steady-state situation is often called subharmonic 

generation (f/2 in this case, where f is the drive frequency).  However, it should 

be noted that f/2 subharmonic generation need not be due to parametric 

excitation.  An example is a driven pendulum, which is well known to exhibit a 

period-doubling route to chaos.  A response at f/2 can occur even though there is 

no mode at or near that frequency. 

Perhaps the simplest and most common parametric instability can occur 

when a mass suspended by a spring is set into vertical oscillation.  If the 

frequency is approximately twice the pendulum frequency, the pendulum mode is 

parametrically excited, which causes the amplitude of the vertical mode to 

decrease.  A nonlinear beating motion then occurs.  The reason for the 

parametric instability in this system is clear:  the vertical mode essentially acts to 

replace the external source in the above example of a pendulum whose length is 

modulated. 

A system of two coupled nonlinear oscillators exhibits a dramatic 

parametric instability that is not easily explained (Denardo et al., 1999).  Figure 

20 shows an example of two identical coupled pendulums.  The symmetric mode, 

in which both pendulums oscillate in phase with the same amplitude, is unstable 

if the amplitude is above a threshold value.   
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Figure 20.   Coupled pendulum apparatus.  The symmetric mode, in which 
both pendulums oscillate in phase with the same amplitude, is unstable if 
the amplitude exceeds a threshold value.  This behavior is an example of a 
parametric instability. 
 
 
B. DEMONSTRATION 

 
A simple lecture demonstration of subharmonic generation can be 

accomplished with a compression driver (Figure 21).  The compression driver is 

driven at an ultrasonic frequency so that the audience cannot hear the tone.  We 

drive a JBL 2450 model with no horn at f = 20 kHz.  The presence of the tone is 

detected by a microphone that is connected to a spectrum analyzer.  The display 

can be projected onto a screen for clear viewing.  As the drive amplitude is slowly 

increased from zero, the peak in the spectrum slowly grows.  At approximately 

1.0 Vrms, a response abruptly appears at half the drive frequency (f/2 = 10 kHz), 

and reaches a significant steady-state value.  This subharmonic generation is 

heard by the audience, and is also observed on the spectrum analyzer (Figure 

22).  After discovering this demonstration, we found that Bolaños (2005) had 

recently pointed it out. 

In this system, as in many systems, the presence of a subharmonic is 

undesirable.  A loudspeaker or compression driver, especially in music 
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reproduction and sound reinforcement, is expected to accurately convert an 

electrical signal to an acoustical one.  The clear presence of the subharmonic 

tone when the fundamental tone cannot be heard is a dramatic demonstration of 

a limitation of the driver. 

 
 
 

 
 
 

Figure 21.   Schematic diagram of a demonstration of an f/2 subharmonic 
from a compression driver.  The function generator is set to f = 20 kHz.  As 
the amplitude of the drive signal to the compression driver is slowly 
increased, a 10 kHz tone is eventually abruptly heard.  The f and f/2 
responses are observed on the spectrum analyzer. 
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Figure 22.   Spectrum of the sound from a JBL 2450 compression driver 
that is driven at frequency f = 20 kHz.  The drive amplitude is 1.0 Vrms, which 
is slightly above the threshold for the appearance of the signal at f/2 = 10 
kHz. 
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C. EXPERIMENTAL DATA 
 

The main question regarding the response of a compression driver at half 

the drive frequency is whether or not this subharmonic is due to parametric 

excitation of a mode, and, if so, what mode is being parametrically excited.  We 

pursued two paths of inquiry to answer this question:  gathering data from our 

system (Sec. B), and studying the relevant scientific literature.  The literature is 

discussed in the next section (Sec. D). 

A remarkable feature of the subharmonic response in our system is that it 

arises abruptly as the drive amplitude is slowly increased.  This is important for 

several reasons.  First, it allows for precise experimental determination of the 

drive amplitude threshold (minimum value) for subharmonic generation.  Second, 

an abrupt threshold is a well-known behavior of parametric excitation, so 

parametric excitation is not ruled out as the cause of subharmonic generation in 

our system.  The quantitative meaning of “abrupt” is that the steady-state 

amplitude of the subharmonic as a function of drive amplitude has infinite slope 

at threshold.  Figure 23 shows the subharmonic amplitude measured with a 

microphone 20 cm from the mouth of the compression driver.  The amplitude is 

measured as a function of the drive voltage to the driver, for a constant drive 

frequency of 20 kHz.  The subharmonic amplitude indeed appears to extrapolate 

to an infinite slope at threshold. 

An obvious question is what drive frequencies other than f = 20 kHz does 

the f/2 subharmonic occur in our system.  We focused our attention on the range 

f = 14 to 26 kHz.  Subharmonic response was found for drive frequencies outside 

this range, but only at drive voltages that were near the limit of the driver, which 

is roughly 15 Vrms.  An exception occurred at 1.0 kHz, where we observed f/2 

subharmonic generation at about 4.0 Vrms.  At each frequency incremented by 

1.0 kHz, we determined the threshold drive amplitude at which the subharmonic 

occurred.  If a mode is being parametrically excited, the plot of threshold drive 

amplitude vs. drive frequency should be approximately a hyperbola in which the 
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minimum is at twice the natural frequency of the mode being parametrically 

excited.  Our data had the rough appearance of a hyperbola, but the data were 

not steadily decreasing and then steadily increasing as the frequency increased.  

Several small crests and troughs were indicated, but the density of points was 

insufficient to establish this.  We thus decreased our frequency increment to 0.5 

kHz, but this did not lead to smoothly-varying data.  We then decreased the 

increment a third time, the results of which are shown in the top graph of Figure 

24. Surprisingly, the data are still not smoothly-varying, even though the 

frequency increment is only 0.2 kHz.   

 

 
Figure 23.   Subharmonic (f/2) response as a function of drive amplitude 
for a constant drive frequency of f = 20 kHz.  The response rises abruptly at 
the drive amplitude threshold of 0.982 Vrms. 
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We refer to the response at the frequency of the drive as the primary 

response.  If the primary response were parametrically exciting the subharmonic, 

the amplitude of the subharmonic would be an increasing function of the 

amplitude of the primary response.  Because we were concerned that the 

primary amplitude may not be constant for different frequencies, we also 

gathered data on the relative amplitude of the primary response, from the 

microphone output.  These data are shown in the bottom graph of Figure 24.  

The amplitude is indeed not constant, but substantially varies.  Furthermore, 

there is a strong correlation between the variations of the threshold data and the 

primary response data below 20 kHz.  This prompted us to normalize the 

threshold amplitude data to the primary amplitude, as a more accurate 

representation of the threshold of the subharmonic.  Figure 25 shows the ratio of 

the threshold amplitude to the primary amplitude.  The result is that the data vary 

more smoothly, and genuine minima are now apparent.  It should be noted that 

the minima are much more pronounced on a linear scale, rather than a 

logarithmic scale which was used in order to clearly show all of the data.  The 

minima are important because each may correspond to parametric excitation of a 

different mode.  We explore this possibility further in the next section (Sec. D). 
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Figure 24.   Threshold drive amplitude for subharmonic excitation as a 
function of drive frequency (top graph).  The data points are connected by 
straight line segments as a guide to display the variation of the values.  The 
bottom graph is the corresponding amplitude of the primary response (at 
the frequency of the drive). 
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Figure 25.   Subharmonic threshold drive amplitude normalized to the 
amplitude of the primary response.  A logarithmic ordinate is used so that 
the variation of all of the data can be clearly discerned.  Each trough 
suggests parametric excitation of a different mode. 

 

It should be noted that there is a means of maintaining a primary response 

with an approximately constant amplitude as the frequency is changed.  This 

method is to use a constant current source rather than the standard constant 

voltage source, which we used due to convenience.   

Finally, some general comments must be made regarding our 

experimental investigations of the nonlinear behavior of a compression driver:  (i) 

we observed many more nonlinear phenomena than reported above, and (ii) our 
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investigations were often seriously hampered by a lack of reproducibility of the 

data.  Our experience was confined to the JBL 2450 model, but this behavior is 

probably common to all compression drivers, and may extend to cone 

loudspeakers.   

In regard to (i), the appearance of unexpected phenomena is typical in 

experimental investigations of nonlinear systems, which tend to be 

overwhelmingly rich in behavior.  As an example in our system, at a drive 

frequency of 3.0 kHz we clearly observed f/3, which, as far as we know, cannot 

be explained as parametric excitation.  At other frequencies, we also occasionally 

did not observe f/2 but, rather, two sidebands equally-spaced about f/2.  This 

behavior may have been due to a nonlinear coupling to some lower-frequency 

mode.  As another example of interesting nonlinear behavior, consider the 

subharmonic response amplitude as a function of drive amplitude (Figure 23).  At 

greater drive amplitudes (beyond the graph), there can a substantial range in 

which the response amplitude decreases with increasing drive amplitude.  In 

other cases, quasiperiodicity develops. 

In regard to (ii), the use of drive amplitudes that are not small evidently 

causes temporary or permanent alteration of some parameters of a compression 

driver.  However, the character of the data was almost always reproducible.  One 

exception was the presence of f/3, which is mentioned above.  On the days 

following this observation, we were unable to reproduce the result, even though 

we carefully searched at different frequencies. 
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D. SURVEY OF LITERATURE AND INTERPRETATION OF DATA 
 

The experimental evidence in previous section (Sec. C) suggests that the 

generation of f/2 subharmonics in a compression driver is due to parametric 

excitation of a mode.  Moreover, for different drive frequencies, different modes 

are excited.  The evidence is the abrupt appearance of a subharmonic as the 

drive amplitude is slowly increased, and a threshold drive amplitude that exhibits 

a sequence of minima as the drive frequency is varied. 

To try to determine whether this conclusion is correct and, if so, what 

modes are being parametrically excited, we decided to search the scientific 

literature.  We initiated the search by contacting JBL Professional Corporation, 

and we were fortunately led to Dr. Alex Voishvillo, who is an expert on the 

nonlinear dynamics of compression drivers.  He graciously sent us many current 

technical papers on the subject, and these papers led us to other scientific 

literature.  We were surprised to find that subharmonic generation in 

compression drivers is an active area of research in the audio engineering 

industry.  The goal is to understand the behavior in order to reduce its 

occurrence.  We repeatedly encountered the statement in the literature that 

loudspeakers and compression drivers are the weakest link in sound 

reproduction and sound reinforcement.  The following are synopses of the 

relevant literature, in chronological order: 

● Pedersen (1935) comments that a discrete spectrum of f/2 subharmonics was 

observed in a loudspeaker (with a cone rather than a diaphragm), and that the 

amplitude of a subharmonic rises very quickly with drive amplitude above a 

threshold.  However, because few investigators at that time believed in the 

existence of subharmonics, Pederson devotes nearly all of the lengthy paper to 

dealing theoretically with parametric excitation of a single-degree-of-freedom 

system.  Pedersen (1935b) presents detailed comparisons of theory and 

experiment for few-degree-of-freedom mechanical and electrical systems.  No 

contact is made with loudspeakers. 
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● Olson (1947, 1957) comments that f/2 subharmonic generation is well known in 

loudspeakers and is very pronounced in the mid-frequency range.  As a model 

equation, he uses a damped driven oscillator with a cubic nonlinearity in the force 

(which is now referred to as a type of Duffing equation).  Olson claims to have 

obtained solutions that have subharmonics.  This is a very surprising claim 

because, to our knowledge, a cubic nonlinearity cannot give rise to parametric 

excitation at f/2.  However, the equation can yield chaos, and might possess a 

period-doubling route to chaos, similar to a driven pendulum (which also has an 

antisymmetric nonlinearity).  If Olson observed period-doubling, this would have 

been decades ahead of its discovery in the 1970s! 

Figure 26 is a sketch from Olson’s book which shows one mechanism of 

parametric excitation of a cone mode.  This excitation causes sound to be 

radiated at half the drive frequency.  This type of parametric excitation is similar 

to length modulation of a string under tension, which has been known since the 

mid-1800s to yield excitation at half the drive frequency. 

 

 

 

Figure 26.   Parametric excitation of a cone mode of a loudspeaker, from 
Olson (1947, 1957).  The frequency of the mode is half the frequency at 
which the voice coil is driven. 
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Finally, Olson states that the smallness and stiffness of the diaphragms of 

compression drivers are unfavorable for the production of subharmonics.   We 

might conclude from this statement that later manufacturing advances reduced 

the diaphragm thickness and thus the mass, in order to increase the amplitude of 

the radiated sound, and also increased the diameter in order to increase the 

amplitude of the radiated sound.  Indeed, the JBL 2450 has a titanium diaphragm 

of diameter 4 inches and thickness 0.002 inch.   

 

● Cunningham (1951) considers a loudspeaker, and restricts the investigations to 

a drive frequency that is twice the resonance frequency of the loudspeaker.  

Excitation at the resonance frequency is achieved, and is assumed to be 

parametric excitation, although this is not proved.  In sound reproduction cases in 

which the amplitudes and phases at different frequencies are continually 

changing, Cunningham argues that the growth rate of the subharmonic is 

typically too slow to have a deleterious effect. 

 

● Hubbard (1988) performed experiments that yielded f/2 subharmonics in 

various compression drivers, and confirmed the results with a current source 

(rather than a voltage source).  The data reveal a multitude of f/2 subharmonics 

at discrete frequencies.  Citing Olson (1947, 1957) Hubbard speculates that the 

subharmonics may be due to a vibrational mode of the diaphragm or the 

nonlinearity of the suspension.  He suggests that mathematical calculations be 

done, and that laser imaging techniques be employed to observe the motion of 

the diaphragm. 

 

● The paper of Aldoshina, et al. (1998) is very difficult to understand, because 

the English is extremely poor and because the scientific presentation is 

substandard.  The investigation is of loudspeakers.  (The word “diaphragm” 
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should be replaced with “cone.”)  The authors claim that an f/2 subharmonic is 

due to parametric excitation of a vibrational mode, and claim that theoretical 

calculations are in approximate agreement with experimental measurements. 

● A follow-on paper of Aldoshina, et al. (1999) is much better than the previous 

paper.  A comparison of theory and experiment appears to allow no doubt that 

subharmonic generation at frequencies other than the fundamental mode of cone 

driver is due to parametric excitation of a deformation mode of the cone, and that 

different deformation modes can be excited depending upon the drive 

parameters.  The parametric drive arises due to nonlinear coupling of the primary 

response and deformation modes of the cone. 

● Voishvillo (2003, 2004) gives an extensive theoretical treatment of nonlinear 

effects in compression drivers, although the possibility of parametric excitation is 

not addressed.  The theory only applies at mid-range frequencies (roughly 500 

Hz to 5 kHz), and the dome is thus treated as rigid.  However, one interesting 

effect that is considered is the parametric modulation of the stiffness and mass of 

the air in the compression chamber.  This modulation is due to the change in 

volume caused by the displacement of the dome.  We comment further on this 

below. 

● Bolaños (2005) performed experiments with four different compression drivers, 

only two of which exhibited f/2 subharmonic generation over the range of roughly 

f = 12 – 20 kHz.  One of these drivers has a subharmonic response at only one 

frequency (f/2 = 8.48 kHz), and the other driver at two frequencies (f/2 = 7.80, 

8.54 kHz).  Bolaños gives results of numerical simulations of the deformation 

modes of a diaphragm, and emphasizes that these modes involve the whole 

moving assembly (including the voice coil and the suspension).  He gives 

qualitative arguments of how these modes can be parametrically excited by the 

primary response.  No quantitative connection with the compression drivers in 

the experiment is made. 
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The above synopses show that the understanding of subharmonic 

generation in compression drivers has recently progressed rapidly, although 

further investigations are needed.  At this point, however, it appears to be nearly 

certain that the subharmonics are due to the primary response at a high 

frequency f parametrically driving a deformation mode of the diaphragm 

assembly at frequency f/2, due to nonlinear coupling of the primary response and 

the deformation modes.  Bolaños’s (2005) drivers yield parametric excitation of 

very few diaphragm modes, whereas our driver yields a multitude.  This contrast 

initially concerned us, because we thought that the behavior in our driver might 

be due to a fundamentally different effect.  It should be noted that Hubbard 

(1988) also observed a multitude of modes.  It is clear from the literature that the 

behavior of different compression drivers can vary substantially.  Our data is 

completely consistent with parametric excitation of diaphragm modes, and so 

there is no reason at this point to suspect that any phenomenon other than 

parametric excitation is occurring. 

Finally, the above work of Voishvillo (2003) regarding the modulation of 

the air stiffness and mass in the compression chamber prompted us to consider 

the interesting possibility that the fundamental (“mass-on-a-spring”) mode of the 

compression driver could be parametrically excited as a result of the modulation.  

As stated in Sec. C, we had observed f/2 subharmonic generation at a drive 

frequency of f = 1.0 kHz.  Could this be parametric excitation of the fundamental 

mode of the compression driver?  In a quick and crude experiment, we found that 

the threshold drive amplitude to excite the subharmonic indeed has a minimum, 

and that this occurs at f = 1.4 kHz, where the drive amplitude is about 3.0 Vrms.  If 

the fundamental mode is being parametrically excited, the resonance frequency 

of the driver should then be half of about 1.4 kHz, or 700 Hz.  It was only after 

this prediction that we checked the specifications sheet of the JBL 2450 model.  

When the driver is connected to a standard horn, which is roughly similar to our 

situation with no horn, the resonance frequency is 650 Hz.  (When the driver is 

connected to a pipe, the resonance frequency is 500 Hz.)  We conclude that the 
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f/2 subharmonic excitation for drive frequencies in the approximate range f = 1-2 

kHz is due to parametric excitation of the fundamental mode of the driver.  We 

have not found any mention of this in the literature. 

The results of this chapter are schematically summarized in Figure 27.  

We have shown that a compression driver offers a dramatic demonstration of 

parametric excitation when driven at a high frequency (roughly 20 kHz), and that 

deformation modes of the diaphragm assembly are being excited.  At low 

frequency (1-2 kHz), parametric excitation of the fundamental mode of the driver 

occurs.  This low-frequency excitation suffers as a lecture demonstration 

because the sound level of the response at the drive frequency is so high that the 

audience would require some type of hearing protection.  However, firmly seating 

a finger in each ear may be sufficient. 
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Figure 27.   Schematic representation of the rough drive parameter 
regions over which parametric excitation occurs in a compression driver.  
The frequency of the excitation is half the drive frequency. 
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V. PARAMETRIC EXCITATION OF A TORSIONAL 
OSCILLATOR 

In this chapter, we discuss the background and improvements made to a 

parametrically excitated torsional oscillator apparatus in which the length of the 

oscillator is modulated.  The background and reasons for this work are stated in 

Sec. A, the improvements are detailed in Sec. B, the demonstration of the 

apparatus is described in Sec. C, and any future work that could be performed 

will be presented in Sec. D. 

 

A. BACKGROUND 
In the spring of 2005, an investigation into the parametric excitation of a 

torsional oscillator was conducted by Ensign Michael Janssen.  The oscillator 

consists of a strip of material with a rod attached to the lower end (Figure 28), so 

that torsional oscillations can occur.  Near the top of the strip is a double-roller 

that sandwiches the strip.  A motor causes the double-roller to oscillate up and 

down, modulating the length and thus the frequency of the torsional oscillatior.  

We will take a look at the construction of the apparatus which was developed in 

Janssen’s thesis.  It is necessary to understand the background and the 

fundamental workings of the apparatus in order to understand the improvements 

that were undertaken. 

As developed in Ensign Janssen’s thesis, we will visit the original 

construction of his apparatus, and then in Sec. B we will see how I improved the 

original apparatus to make it a feasible classroom demonstration.  Ensign 

Janssen implemented his work in three phases.  Phase one consisted of 

constructing the support structure.  This task included the design and making of 

the frame, the three leg leveling system, and the acrylic mounting for the motor.  

The next phase consisted of constructing the roller guide and ribbon clamp.  Two 

rollers were machined to be as identical as possible so that there would not be 

any nonuniformities in the rolling mechanism. The final phase of construction 
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involved creating the drive system.  The drive system used in the original 

construction consisted of a salvaged motor that no specifications were known 

and a 60 to 1 ratio gear box which was also salvage from another piece of 

equipment.  This was done because of the timing issue with his thesis.  Ensign 

Janssen’s end product can be seen in Figure 28.  The ground work for the 

apparatus was laid out, but there were several improvements that needed to be 

made to his work, and I will address these as they occurred in my work in Section 

B. 

 
Figure 28.   Original torsional oscillator. 

 

B. IMPROVEMENTS 
There were several improvements that were needed to make the 

apparatus a feasible demonstration for the classroom.  The improvements were 

made in various steps.  The first step was to find a strip with a higher stiffness 
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than that used in previous work so that the restoring force would be much 

greater.  The second step was to find a motor that fit the parameters of the new 

material and possibly be used if even further improvements are made.  The third 

improvement was to maintain the integrity of the design to meet the new 

specifications of the motor and strip. 

Step one of this process was done by measuring the natural frequency of 

several individual strips.  Since each strip had a different natural frequency, 

thickness, and color, we will reference them by the color.  There were four strips 

measured which gave a span of different frequencies to run the motor.  To 

measure the natural frequency of each strip, I attached the strip to the apparatus 

and displaced the oscillator with my hand.  As the oscillations decayed the 

natural frequency was measured over a time of thirty seconds.  I counted the 

number of oscillations in that given time and calculated the period and then 

converted these measurements to a frequency and RPM.  The strip used in 

previous work had a natural frequency f=.132 Hz and had to be driven at .264 Hz 

or 15.84 RPM.  The natural frequencies and driving RPM to excite each strip are 

shown in Table 1. 

 

Strip Period
Natural 

Frequency (Hz) 
RPM(for 

Twice NF) 
Pink 1.38 0.72 86.71 
Orange 1.34 0.74 89.22 
Yellow 0.99 1.00 120.48 
White 0.74 1.36 163.04 

 

Table 1.   Natural frequencies and drive RPM to parametrically excite each 
strip. 

 

Each new strip could not be used on the previous apparatus due to the motor.  

The motor used in the construction of the first apparatus did not have any 

specifications, but was known not to provide enough torque to parametrically 

excite a strip with a frequency higher than .132 Hz.  The new motor would have 
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to provide a much higher torque and variable RPM speeds to be effective at the 

parametric excitation of this oscillator. 

The new motor shown in Figure 29 was attached to the top of the 

apparatus on an acrylic mount.  It is a Bodine model 3399, 3/8 Horsepower, DC 

brushless motor with a built in gearbox with a ratio of 10:1.  Without the gearbox 

the motor had a max RPM speed of 2500 RPM, and once the gearbox was 

attached it had a max speed of 250 RPM and a minimum speed of 20 RPM.  

Since the stiffest strip that is in the inventory has to be driven at 163 RPM this 

motor more than exceeds the needed RPM speeds.  We wanted to use this 

apparatus as a classroom demonstration, and with the new motor, it has cut 

down on the excitation time dramatically. 

 
Figure 29.   New motor. 
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The other features in which this motor offered was that it required a 

controller.  With the controller shown in Figure 30, the ability to operate the motor 

at variable RPM speeds was now a possibility.  This feature was a large 

improvement over the previous motor, but the dial on the new controller was not 

enough to give a precise RPM readout.  Bodine also made a tachometer which 

could hook up to the controller.  With this feature the demonstrator would be able 

to dial up a precise RPM necessary to parametrically excite the oscillator.  This 

feature was very important because it allowed the demonstrator a quick transition 

from the discussion to the demonstration.  If the tachometer had not been added 

on then the demonstrator would have to search for the right speed which could 

take away from the demonstration itself. 

 
Figure 30.   Controller box setup for tachometer output. 
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The point came where the construction of the apparatus had to be 

modified due to the new parts. Since the motor was much larger than the 

previous, the motor had to be mounted on a 1 inch thick piece of acrylic, and the 

motor platform had to be extended a couple of inches to allow the original frame 

to still be used.  The new motor also provided a much greater torque.  Due to the 

increased amount of torque the top plate of acrylic in which the motor was 

mounted was flexing.  The effects of this were causing the entire apparatus to 

shake and go off balance.  The first remedy to this problem was to install 

aluminum bracing to the top plate to try and secure the flexing response of the 

system.  This did stop the flexing of the top plate for the most part, but it did not 

stop the entire system from rocking due to the original design of three legs.  The 

previous motor was operated at such low speed that it did not cause to system to 

rock at all, so it was built with three base legs so that it would be easier to level.  

The previous leveling system, however, was a problem given the speed and the 

amount of torque at which the new motor operates.  Two base aluminum plates 

were added giving the apparatus four base legs instead of three.  With this 

improvement the apparatus was almost completely stable and the end product 

can be seen in Figure 31.  Further improvements to the structure of the frame will 

be discussed in Sec. D for future work. 
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Figure 31.   Modified version of the parametrically excited torsional 
oscillator apparatus. 
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The next problem faced was that due to the increased stiffness of the strip 

being used. The rollers were not able apply the proper tension needed to keep 

the strip in place; the strip was causing the rollers to spread and shake due to the 

tension problem.  This problem caused the pendulum motion of the strip to be 

excited which damped out and took over the torsional effect.  The quick remedy 

to this was to install springs to each side of the rollers to try and fix the problem.  

This can be seen in Figure 32.  Once the springs were in place to pendulum 

motion was not excited as easily.  This can sometimes occur at very high RPM 

speeds, but further improvements to the roller mechanism will be discussed in 

Sec. D for future work. 

 
Figure 32.   Rollers with new tension spring. 
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C. DEMONSTRATION 
This apparatus was created for the purpose of showing the parametric 

excitation of a torsional oscillator.  The demonstrator will select the yellow strip in 

Table 1, and will then set the dial to the proper RPM speed.  The yellow strip was 

selected due to its high stiffness.  If one of the stiffer strips are chosen then the 

total displacement of the oscillator decreases causing less of a visual effect.  

Once the proper drive frequency is set then the motor will be started via the 

controller.  The motor then drives a locomotive type arm, and the rollers roll up 

and down a strip of some stiffness.  This causes the length modulation of the 

apparatus which in turn parametrically excites the torsional oscillations of the 

system.  For most of the strips, it takes about 30 seconds for the apparatus to 

become parametrically excited, so the lecturer should start the demonstration 

and lecture concurrently.   

 

D. FUTURE WORK 
The apparatus is ready for lecture demonstrations.  Any future work would 

be for the purpose of research or to make the demonstration even more efficient.  

The areas which could be improved upon consist of the structure of the 

apparatus and the material used for the strip.  The structure has been vastly 

improved, but the way in which the apparatus is driven it has metal on metal 

rubbing.  We would like see roller bearing inserted into the driving components.  

This would allow for much smoother stroke, and would decrease the amount of 

lubrication in which the apparatus requires.  The next improvement would be to 

purchase a different material for the strip.  We would like a material that the 

stiffness was known.  With a better material that was cut properly the system 

would look much cleaner. 
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VI. CONCLUSIONS 

Nonlinear oscillations and waves are an important area of educational 

study.  Due to the difficulty of the subject matter it is vital to have classroom 

demonstrations.  We have paved the path for future thesis students to take the 

initial development our nonlinear gravity wave demonstration and create a 

feasible classroom demonstration.  We have shown that subharmonic generation 

due to parametric excitation in a compression driver is a feasible demonstration.  

The torsional oscillator demonstration has now been drastically improved and is 

classroom ready.  The nonlinear capillary wave demonstration was a failed 

project, but it will allow insight into possibilities that may work for future attempts.  

This thesis was designed for the express purpose of developing demonstrations 

and furthering research into the subject of nonlinearity.  We have accomplished 

both goals, and have made several developments that allow for continued 

research and give better understanding to the students to take courses involving 

nonlinearity. 
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